Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

SCALE: Online Self-Supervised Lifelong Learning without Prior Knowledge (2208.11266v5)

Published 24 Aug 2022 in cs.LG and cs.AI

Abstract: Unsupervised lifelong learning refers to the ability to learn over time while memorizing previous patterns without supervision. Although great progress has been made in this direction, existing work often assumes strong prior knowledge about the incoming data (e.g., knowing the class boundaries), which can be impossible to obtain in complex and unpredictable environments. In this paper, motivated by real-world scenarios, we propose a more practical problem setting called online self-supervised lifelong learning without prior knowledge. The proposed setting is challenging due to the non-iid and single-pass data, the absence of external supervision, and no prior knowledge. To address the challenges, we propose Self-Supervised ContrAstive Lifelong LEarning without Prior Knowledge (SCALE) which can extract and memorize representations on the fly purely from the data continuum. SCALE is designed around three major components: a pseudo-supervised contrastive loss, a self-supervised forgetting loss, and an online memory update for uniform subset selection. All three components are designed to work collaboratively to maximize learning performance. We perform comprehensive experiments of SCALE under iid and four non-iid data streams. The results show that SCALE outperforms the state-of-the-art algorithm in all settings with improvements up to 3.83%, 2.77% and 5.86% in terms of kNN accuracy on CIFAR-10, CIFAR-100, and TinyImageNet datasets.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.