Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

FirmCore Decomposition of Multilayer Networks (2208.11200v1)

Published 23 Aug 2022 in cs.SI

Abstract: A key graph mining primitive is extracting dense structures from graphs, and this has led to interesting notions such as $k$-cores which subsequently have been employed as building blocks for capturing the structure of complex networks and for designing efficient approximation algorithms for challenging problems such as finding the densest subgraph. In applications such as biological, social, and transportation networks, interactions between objects span multiple aspects. Multilayer (ML) networks have been proposed for accurately modeling such applications. In this paper, we present FirmCore, a new family of dense subgraphs in ML networks, and show that it satisfies many of the nice properties of $k$-cores in single-layer graphs. Unlike the state of the art core decomposition of ML graphs, FirmCores have a polynomial time algorithm, making them a powerful tool for understanding the structure of massive ML networks. We also extend FirmCore for directed ML graphs. We show that FirmCores and directed FirmCores can be used to obtain efficient approximation algorithms for finding the densest subgraphs of ML graphs and their directed counterparts. Our extensive experiments over several real ML graphs show that our FirmCore decomposition algorithm is significantly more efficient than known algorithms for core decompositions of ML graphs. Furthermore, it returns solutions of matching or better quality for the densest subgraph problem over (possibly directed) ML graphs.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.