Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Strong XOR Lemma for Communication with Bounded Rounds (2208.11152v1)

Published 23 Aug 2022 in cs.CC

Abstract: In this paper, we prove a strong XOR lemma for bounded-round two-player randomized communication. For a function $f:\mathcal{X}\times \mathcal{Y}\rightarrow{0,1}$, the $n$-fold XOR function $f{\oplus n}:\mathcal{X}n\times \mathcal{Y}n\rightarrow{0,1}$ maps $n$ input pairs $(X_1,\ldots,X_n,Y_1,\ldots,Y_n)$ to the XOR of the $n$ output bits $f(X_1,Y_1)\oplus \cdots \oplus f(X_n, Y_n)$. We prove that if every $r$-round communication protocols that computes $f$ with probability $2/3$ uses at least $C$ bits of communication, then any $r$-round protocol that computes $f{\oplus n}$ with probability $1/2+\exp(-O(n))$ must use $n\cdot \left(r{-O(r)}\cdot C-1\right)$ bits. When $r$ is a constant and $C$ is sufficiently large, this is $\Omega(n\cdot C)$ bits. It matches the communication cost and the success probability of the trivial protocol that computes the $n$ bits $f(X_i,Y_i)$ independently and outputs their XOR, up to a constant factor in $n$. A similar XOR lemma has been proved for $f$ whose communication lower bound can be obtained via bounding the discrepancy [Shaltiel'03]. By the equivalence between the discrepancy and the correlation with $2$-bit communication protocols [Viola-Wigderson'08], our new XOR lemma implies the previous result.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)