Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Error Estimates for a Linearized Fractional Crank-Nicolson FEM for Kirchhoff type Quasilinear Subdiffusion Equation with Memory (2208.11104v1)

Published 23 Aug 2022 in math.NA and cs.NA

Abstract: In this paper, we develop a linearized fractional Crank-Nicolson-Galerkin FEM for Kirchhoff type quasilinear time-fractional integro-differential equation $\left(\mathcal{D}{\alpha}\right)$. In general, the solutions to the time-fractional problems exhibit a weak singularity at time $t=0$. This singular behavior of the solutions is taken into account while deriving the convergence estimates of the developed numerical scheme. We prove that the proposed numerical scheme has an accuracy rate of $O(M{-1}+N{-2})$ in $L{\infty}(0,T;L{2}(\Omega))$ as well as in $L{\infty}(0,T;H{1}_{0}(\Omega))$, where $M$ and $N$ are the degrees of freedom in the space and time directions respectively. A numerical experiment is presented to verify the theoretical results.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.