Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learn Basic Skills and Reuse: Modularized Adaptive Neural Architecture Search (MANAS) (2208.11083v2)

Published 23 Aug 2022 in cs.LG, cs.AI, cs.IR, and cs.SC

Abstract: Human intelligence is able to first learn some basic skills for solving basic problems and then assemble such basic skills into complex skills for solving complex or new problems. For example, the basic skills "dig hole," "put tree," "backfill" and "watering" compose a complex skill "plant a tree". Besides, some basic skills can be reused for solving other problems. For example, the basic skill "dig hole" not only can be used for planting a tree, but also can be used for mining treasures, building a drain, or landfilling. The ability to learn basic skills and reuse them for various tasks is very important for humans because it helps to avoid learning too many skills for solving each individual task, and makes it possible to solve a compositional number of tasks by learning just a few number of basic skills, which saves a considerable amount of memory and computation in the human brain. We believe that machine intelligence should also capture the ability of learning basic skills and reusing them by composing into complex skills. In computer science language, each basic skill is a "module", which is a reusable network of a concrete meaning and performs a specific basic operation. The modules are assembled into a bigger "model" for doing a more complex task. The assembling procedure is adaptive to the input or task, i.e., for a given task, the modules should be assembled into the best model for solving the task. As a result, different inputs or tasks could have different assembled models, which enables Auto-Assembling AI (AAAI). In this work, we propose Modularized Adaptive Neural Architecture Search (MANAS) to demonstrate the above idea. Experiments on different datasets show that the adaptive architecture assembled by MANAS outperforms static global architectures. Further experiments and empirical analysis provide insights to the effectiveness of MANAS.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube