Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Robot Active Neural Sensing and Planning in Unknown Cluttered Environments (2208.11079v2)

Published 23 Aug 2022 in cs.RO, cs.AI, cs.CV, and cs.LG

Abstract: Active sensing and planning in unknown, cluttered environments is an open challenge for robots intending to provide home service, search and rescue, narrow-passage inspection, and medical assistance. Although many active sensing methods exist, they often consider open spaces, assume known settings, or mostly do not generalize to real-world scenarios. We present the active neural sensing approach that generates the kinematically feasible viewpoint sequences for the robot manipulator with an in-hand camera to gather the minimum number of observations needed to reconstruct the underlying environment. Our framework actively collects the visual RGBD observations, aggregates them into scene representation, and performs object shape inference to avoid unnecessary robot interactions with the environment. We train our approach on synthetic data with domain randomization and demonstrate its successful execution via sim-to-real transfer in reconstructing narrow, covered, real-world cabinet environments cluttered with unknown objects. The natural cabinet scenarios impose significant challenges for robot motion and scene reconstruction due to surrounding obstacles and low ambient lighting conditions. However, despite unfavorable settings, our method exhibits high performance compared to its baselines in terms of various environment reconstruction metrics, including planning speed, the number of viewpoints, and overall scene coverage.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube