Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhanced Opposition Differential Evolution Algorithm for Multimodal Optimization (2208.11066v1)

Published 23 Aug 2022 in cs.NE

Abstract: Most of the real-world problems are multimodal in nature that consists of multiple optimum values. Multimodal optimization is defined as the process of finding multiple global and local optima (as opposed to a single solution) of a function. It enables a user to switch between different solutions as per the need while still maintaining the optimal system performance. Classical gradient-based methods fail for optimization problems in which the objective functions are either discontinuous or non-differentiable. Evolutionary Algorithms (EAs) are able to find multiple solutions within a population in a single algorithmic run as compared to classical optimization techniques that need multiple restarts and multiple runs to find different solutions. Hence, several EAs have been proposed to solve such kinds of problems. However, Differential Evolution (DE) algorithm is a population-based heuristic method that can solve such optimization problems, and it is simple to implement. The potential challenge in Multi-Modal Optimization Problems (MMOPs) is to search the function space efficiently to locate most of the peaks accurately. The optimization problem could be to minimize or maximize a given objective function and we aim to solve the maximization problems on multimodal functions in this study. Hence, we have proposed an algorithm known as Enhanced Opposition Differential Evolution (EODE) algorithm to solve the MMOPs. The proposed algorithm has been tested on IEEE Congress on Evolutionary Computation (CEC) 2013 benchmark functions, and it achieves competitive results compared to the existing state-of-the-art approaches.

Summary

We haven't generated a summary for this paper yet.