Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Regularized impurity reduction: Accurate decision trees with complexity guarantees (2208.10949v1)

Published 23 Aug 2022 in cs.LG and cs.DS

Abstract: Decision trees are popular classification models, providing high accuracy and intuitive explanations. However, as the tree size grows the model interpretability deteriorates. Traditional tree-induction algorithms, such as C4.5 and CART, rely on impurity-reduction functions that promote the discriminative power of each split. Thus, although these traditional methods are accurate in practice, there has been no theoretical guarantee that they will produce small trees. In this paper, we justify the use of a general family of impurity functions, including the popular functions of entropy and Gini-index, in scenarios where small trees are desirable, by showing that a simple enhancement can equip them with complexity guarantees. We consider a general setting, where objects to be classified are drawn from an arbitrary probability distribution, classification can be binary or multi-class, and splitting tests are associated with non-uniform costs. As a measure of tree complexity, we adopt the expected cost to classify an object drawn from the input distribution, which, in the uniform-cost case, is the expected number of tests. We propose a tree-induction algorithm that gives a logarithmic approximation guarantee on the tree complexity. This approximation factor is tight up to a constant factor under mild assumptions. The algorithm recursively selects a test that maximizes a greedy criterion defined as a weighted sum of three components. The first two components encourage the selection of tests that improve the balance and the cost-efficiency of the tree, respectively, while the third impurity-reduction component encourages the selection of more discriminative tests. As shown in our empirical evaluation, compared to the original heuristics, the enhanced algorithms strike an excellent balance between predictive accuracy and tree complexity.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: