Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Review of Machine Learning-based Failure Management in Optical Networks (2208.10677v1)

Published 23 Aug 2022 in cs.NI and eess.SP

Abstract: Failure management plays a significant role in optical networks. It ensures secure operation, mitigates potential risks, and executes proactive protection. Machine learning (ML) is considered to be an extremely powerful technique for performing comprehensive data analysis and complex network management and is widely utilized for failure management in optical networks to revolutionize the conventional manual methods. In this study, the background of failure management is introduced, where typical failure tasks, physical objects, ML algorithms, data source, and extracted information are illustrated in detail. An overview of the applications of ML in failure management is provided in terms of alarm analysis, failure prediction, failure detection, failure localization, and failure identification. Finally, the future directions on ML for failure management are discussed from the perspective of data, model, task, and emerging techniques.

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.