Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Machine Learning-Enabled Cyber Attack Prediction and Mitigation for EV Charging Stations (2208.10644v1)

Published 22 Aug 2022 in cs.CR, cs.SY, and eess.SY

Abstract: Safe and reliable electric vehicle charging stations (EVCSs) have become imperative in an intelligent transportation infrastructure. Over the years, there has been a rapid increase in the deployment of EVCSs to address the upsurging charging demands. However, advances in information and communication technologies (ICT) have rendered this cyber-physical system (CPS) vulnerable to suffering cyber threats, thereby destabilizing the charging ecosystem and even the entire electric grid infrastructure. This paper develops an advanced cybersecurity framework, where STRIDE threat modeling is used to identify potential vulnerabilities in an EVCS. Further, the weighted attack defense tree approach is employed to create multiple attack scenarios, followed by developing Hidden Markov Model (HMM) and Partially Observable Monte-Carlo Planning (POMCP) algorithms for modeling the security attacks. Also, potential mitigation strategies are suggested for the identified threats.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.