Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SVD-NAS: Coupling Low-Rank Approximation and Neural Architecture Search (2208.10404v1)

Published 22 Aug 2022 in cs.LG

Abstract: The task of compressing pre-trained Deep Neural Networks has attracted wide interest of the research community due to its great benefits in freeing practitioners from data access requirements. In this domain, low-rank approximation is a promising method, but existing solutions considered a restricted number of design choices and failed to efficiently explore the design space, which lead to severe accuracy degradation and limited compression ratio achieved. To address the above limitations, this work proposes the SVD-NAS framework that couples the domains of low-rank approximation and neural architecture search. SVD-NAS generalises and expands the design choices of previous works by introducing the Low-Rank architecture space, LR-space, which is a more fine-grained design space of low-rank approximation. Afterwards, this work proposes a gradient-descent-based search for efficiently traversing the LR-space. This finer and more thorough exploration of the possible design choices results in improved accuracy as well as reduction in parameters, FLOPS, and latency of a CNN model. Results demonstrate that the SVD-NAS achieves 2.06-12.85pp higher accuracy on ImageNet than state-of-the-art methods under the data-limited problem setting. SVD-NAS is open-sourced at https://github.com/Yu-Zhewen/SVD-NAS.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub