Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SVD-NAS: Coupling Low-Rank Approximation and Neural Architecture Search (2208.10404v1)

Published 22 Aug 2022 in cs.LG

Abstract: The task of compressing pre-trained Deep Neural Networks has attracted wide interest of the research community due to its great benefits in freeing practitioners from data access requirements. In this domain, low-rank approximation is a promising method, but existing solutions considered a restricted number of design choices and failed to efficiently explore the design space, which lead to severe accuracy degradation and limited compression ratio achieved. To address the above limitations, this work proposes the SVD-NAS framework that couples the domains of low-rank approximation and neural architecture search. SVD-NAS generalises and expands the design choices of previous works by introducing the Low-Rank architecture space, LR-space, which is a more fine-grained design space of low-rank approximation. Afterwards, this work proposes a gradient-descent-based search for efficiently traversing the LR-space. This finer and more thorough exploration of the possible design choices results in improved accuracy as well as reduction in parameters, FLOPS, and latency of a CNN model. Results demonstrate that the SVD-NAS achieves 2.06-12.85pp higher accuracy on ImageNet than state-of-the-art methods under the data-limited problem setting. SVD-NAS is open-sourced at https://github.com/Yu-Zhewen/SVD-NAS.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub