Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MOM: Matrix Operations in MLIR (2208.10391v1)

Published 22 Aug 2022 in cs.PL and cs.MS

Abstract: Modern research in code generators for dense linear algebra computations has shown the ability to produce optimized code with a performance which compares and often exceeds the one of state-of-the-art implementations by domain experts. However, the underlying infrastructure is often developed in isolation making the interconnection of logically combinable systems complicated if not impossible. In this paper, we propose to leverage MLIR as a unifying compiler infrastructure for the optimization of dense linear algebra operations. We propose a new MLIR dialect for expressing linear algebraic computations including matrix properties to enable high-level algorithmic transformations. The integration of this new dialect in MLIR enables end-to-end compilation of matrix computations via conversion to existing lower-level dialects already provided by the framework.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.