Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 142 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Massively Parallel Universal Linear Transformations using a Wavelength-Multiplexed Diffractive Optical Network (2208.10362v1)

Published 13 Aug 2022 in cs.NE and physics.optics

Abstract: We report deep learning-based design of a massively parallel broadband diffractive neural network for all-optically performing a large group of arbitrarily-selected, complex-valued linear transformations between an input and output field-of-view, each with N_i and N_o pixels, respectively. This broadband diffractive processor is composed of N_w wavelength channels, each of which is uniquely assigned to a distinct target transformation. A large set of arbitrarily-selected linear transformations can be individually performed through the same diffractive network at different illumination wavelengths, either simultaneously or sequentially (wavelength scanning). We demonstrate that such a broadband diffractive network, regardless of its material dispersion, can successfully approximate N_w unique complex-valued linear transforms with a negligible error when the number of diffractive neurons (N) in its design matches or exceeds 2 x N_w x N_i x N_o. We further report that the spectral multiplexing capability (N_w) can be increased by increasing N; our numerical analyses confirm these conclusions for N_w > 180, which can be further increased to e.g., ~2000 depending on the upper bound of the approximation error. Massively parallel, wavelength-multiplexed diffractive networks will be useful for designing high-throughput intelligent machine vision systems and hyperspectral processors that can perform statistical inference and analyze objects/scenes with unique spectral properties.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.