Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Repurposing Knowledge Graph Embeddings for Triple Representation via Weak Supervision (2208.10328v1)

Published 22 Aug 2022 in cs.CL and cs.AI

Abstract: The majority of knowledge graph embedding techniques treat entities and predicates as separate embedding matrices, using aggregation functions to build a representation of the input triple. However, these aggregations are lossy, i.e. they do not capture the semantics of the original triples, such as information contained in the predicates. To combat these shortcomings, current methods learn triple embeddings from scratch without utilizing entity and predicate embeddings from pre-trained models. In this paper, we design a novel fine-tuning approach for learning triple embeddings by creating weak supervision signals from pre-trained knowledge graph embeddings. We develop a method for automatically sampling triples from a knowledge graph and estimating their pairwise similarities from pre-trained embedding models. These pairwise similarity scores are then fed to a Siamese-like neural architecture to fine-tune triple representations. We evaluate the proposed method on two widely studied knowledge graphs and show consistent improvement over other state-of-the-art triple embedding methods on triple classification and triple clustering tasks.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.