Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient Utility Function Learning for Multi-Objective Parameter Optimization with Prior Knowledge (2208.10300v2)

Published 22 Aug 2022 in cs.LG and cs.AI

Abstract: The current state-of-the-art in multi-objective optimization assumes either a given utility function, learns a utility function interactively or tries to determine the complete Pareto front, requiring a post elicitation of the preferred result. However, result elicitation in real world problems is often based on implicit and explicit expert knowledge, making it difficult to define a utility function, whereas interactive learning or post elicitation requires repeated and expensive expert involvement. To mitigate this, we learn a utility function offline, using expert knowledge by means of preference learning. In contrast to other works, we do not only use (pairwise) result preferences, but also coarse information about the utility function space. This enables us to improve the utility function estimate, especially when using very few results. Additionally, we model the occurring uncertainties in the utility function learning task and propagate them through the whole optimization chain. Our method to learn a utility function eliminates the need of repeated expert involvement while still leading to high-quality results. We show the sample efficiency and quality gains of the proposed method in 4 domains, especially in cases where the surrogate utility function is not able to exactly capture the true expert utility function. We also show that to obtain good results, it is important to consider the induced uncertainties and analyze the effect of biased samples, which is a common problem in real world domains.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.