Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

MolGraph: a Python package for the implementation of molecular graphs and graph neural networks with TensorFlow and Keras (2208.09944v4)

Published 21 Aug 2022 in cs.LG and q-bio.QM

Abstract: Molecular ML has proven important for tackling various molecular problems, such as predicting molecular properties based on molecular descriptors or fingerprints. Since relatively recently, graph neural network (GNN) algorithms have been implemented for molecular ML, showing comparable or superior performance to descriptor or fingerprint-based approaches. Although various tools and packages exist to apply GNNs in molecular ML, a new GNN package, named MolGraph, was developed in this work with the motivation to create GNN model pipelines highly compatible with the TensorFlow and Keras application programming interface (API). MolGraph also implements a chemistry module to accommodate the generation of small molecular graphs, which can be passed to a GNN algorithm to solve a molecular ML problem. To validate the GNNs, they were benchmarked against the datasets of MoleculeNet, as well as three chromatographic retention time datasets. The results on these benchmarks illustrate that the GNNs performed as expected. Additionally, the GNNs proved useful for molecular identification and improved interpretability of chromatographic retention time data. MolGraph is available at https://github.com/akensert/molgraph. Installation, tutorials and implementation details can be found at https://molgraph.readthedocs.io/en/latest/.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com