Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

HST: Hierarchical Swin Transformer for Compressed Image Super-resolution (2208.09885v2)

Published 21 Aug 2022 in cs.CV and eess.IV

Abstract: Compressed Image Super-resolution has achieved great attention in recent years, where images are degraded with compression artifacts and low-resolution artifacts. Since the complex hybrid distortions, it is hard to restore the distorted image with the simple cooperation of super-resolution and compression artifacts removing. In this paper, we take a step forward to propose the Hierarchical Swin Transformer (HST) network to restore the low-resolution compressed image, which jointly captures the hierarchical feature representations and enhances each-scale representation with Swin transformer, respectively. Moreover, we find that the pretraining with Super-resolution (SR) task is vital in compressed image super-resolution. To explore the effects of different SR pretraining, we take the commonly-used SR tasks (e.g., bicubic and different real super-resolution simulations) as our pretraining tasks, and reveal that SR plays an irreplaceable role in the compressed image super-resolution. With the cooperation of HST and pre-training, our HST achieves the fifth place in AIM 2022 challenge on the low-quality compressed image super-resolution track, with the PSNR of 23.51dB. Extensive experiments and ablation studies have validated the effectiveness of our proposed methods. The code and models are available at https://github.com/USTC-IMCL/HST-for-Compressed-Image-SR.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com