Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Artifact-Based Domain Generalization of Skin Lesion Models (2208.09756v1)

Published 20 Aug 2022 in cs.CV and cs.AI

Abstract: Deep Learning failure cases are abundant, particularly in the medical area. Recent studies in out-of-distribution generalization have advanced considerably on well-controlled synthetic datasets, but they do not represent medical imaging contexts. We propose a pipeline that relies on artifacts annotation to enable generalization evaluation and debiasing for the challenging skin lesion analysis context. First, we partition the data into levels of increasingly higher biased training and test sets for better generalization assessment. Then, we create environments based on skin lesion artifacts to enable domain generalization methods. Finally, after robust training, we perform a test-time debiasing procedure, reducing spurious features in inference images. Our experiments show our pipeline improves performance metrics in biased cases, and avoids artifacts when using explanation methods. Still, when evaluating such models in out-of-distribution data, they did not prefer clinically-meaningful features. Instead, performance only improved in test sets that present similar artifacts from training, suggesting models learned to ignore the known set of artifacts. Our results raise a concern that debiasing models towards a single aspect may not be enough for fair skin lesion analysis.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.