Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Machine learning based surrogate models for microchannel heat sink optimization (2208.09683v2)

Published 20 Aug 2022 in physics.flu-dyn and cs.LG

Abstract: Microchannel heat sinks are an efficient cooling method for semiconductor packages. However, to properly cool increasingly complex and thermally dense circuits, microchannel designs should be improved and expanded on. In this paper, microchannel designs with secondary channels and with ribs are investigated using computational fluid dynamics and are coupled with a multi-objective optimization algorithm to determine and propose optimal solutions based on observed thermal resistance and pumping power. A workflow that combines Latin hypercube sampling, machine learning-based surrogate modeling and multi-objective optimization is proposed. Random forests, gradient boosting algorithms and neural networks were considered during the search for the best surrogate. We demonstrated that tuned neural networks can make accurate predictions and be used to create an acceptable surrogate model. Optimized solutions show a negligible difference in overall performance when compared to the conventional optimization approach. Additionally, solutions are calculated in one-fifth of the original time. Generated designs attain temperatures that are lower by more than 10% under the same pressure limits as a convectional microchannel design. When limited by temperature, pressure drops are reduced by more than 25%. Finally, the influence of each design variable on the thermal resistance and pumping power was investigated by employing the SHapley Additive exPlanations technique. Overall, we have demonstrated that the proposed framework has merit and can be used as a viable methodology in microchannel heat sink design optimization.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.