Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 418 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Modeling, Quantifying, and Predicting Subjectivity of Image Aesthetics (2208.09666v1)

Published 20 Aug 2022 in cs.CV

Abstract: Assessing image aesthetics is a challenging computer vision task. One reason is that aesthetic preference is highly subjective and may vary significantly among people for certain images. Thus, it is important to properly model and quantify such \textit{subjectivity}, but there has not been much effort to resolve this issue. In this paper, we propose a novel unified probabilistic framework that can model and quantify subjective aesthetic preference based on the subjective logic. In this framework, the rating distribution is modeled as a beta distribution, from which the probabilities of being definitely pleasing, being definitely unpleasing, and being uncertain can be obtained. We use the probability of being uncertain to define an intuitive metric of subjectivity. Furthermore, we present a method to learn deep neural networks for prediction of image aesthetics, which is shown to be effective in improving the performance of subjectivity prediction via experiments. We also present an application scenario where the framework is beneficial for aesthetics-based image recommendation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.