Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An ensemble meta-estimator to predict source code testability (2208.09614v2)

Published 20 Aug 2022 in cs.SE and cs.LG

Abstract: Unlike most other software quality attributes, testability cannot be evaluated solely based on the characteristics of the source code. The effectiveness of the test suite and the budget assigned to the test highly impact the testability of the code under test. The size of a test suite determines the test effort and cost, while the coverage measure indicates the test effectiveness. Therefore, testability can be measured based on the coverage and number of test cases provided by a test suite, considering the test budget. This paper offers a new equation to estimate testability regarding the size and coverage of a given test suite. The equation has been used to label 23,000 classes belonging to 110 Java projects with their testability measure. The labeled classes were vectorized using 262 metrics. The labeled vectors were fed into a family of supervised machine learning algorithms, regression, to predict testability in terms of the source code metrics. Regression models predicted testability with an R2 of 0.68 and a mean squared error of 0.03, suitable in practice. Fifteen software metrics highly affecting testability prediction were identified using a feature importance analysis technique on the learned model. The proposed models have improved mean absolute error by 38% due to utilizing new criteria, metrics, and data compared with the relevant study on predicting branch coverage as a test criterion. As an application of testability prediction, it is demonstrated that automated refactoring of 42 smelly Java classes targeted at improving the 15 influential software metrics could elevate their testability by an average of 86.87%.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube