Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Open Vocabulary Multi-Label Classification with Dual-Modal Decoder on Aligned Visual-Textual Features (2208.09562v2)

Published 19 Aug 2022 in cs.CV, cs.AI, and cs.LG

Abstract: In computer vision, multi-label recognition are important tasks with many real-world applications, but classifying previously unseen labels remains a significant challenge. In this paper, we propose a novel algorithm, Aligned Dual moDality ClaSsifier (ADDS), which includes a Dual-Modal decoder (DM-decoder) with alignment between visual and textual features, for open-vocabulary multi-label classification tasks. Then we design a simple and yet effective method called Pyramid-Forwarding to enhance the performance for inputs with high resolutions. Moreover, the Selective Language Supervision is applied to further enhance the model performance. Extensive experiments conducted on several standard benchmarks, NUS-WIDE, ImageNet-1k, ImageNet-21k, and MS-COCO, demonstrate that our approach significantly outperforms previous methods and provides state-of-the-art performance for open-vocabulary multi-label classification, conventional multi-label classification and an extreme case called single-to-multi label classification where models trained on single-label datasets (ImageNet-1k, ImageNet-21k) are tested on multi-label ones (MS-COCO and NUS-WIDE).

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.