Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Personalizing Intervened Network for Long-tailed Sequential User Behavior Modeling (2208.09130v1)

Published 19 Aug 2022 in cs.IR, cs.AI, and cs.SI

Abstract: In an era of information explosion, recommendation systems play an important role in people's daily life by facilitating content exploration. It is known that user activeness, i.e., number of behaviors, tends to follow a long-tail distribution, where the majority of users are with low activeness. In practice, we observe that tail users suffer from significantly lower-quality recommendation than the head users after joint training. We further identify that a model trained on tail users separately still achieve inferior results due to limited data. Though long-tail distributions are ubiquitous in recommendation systems, improving the recommendation performance on the tail users still remains challenge in both research and industry. Directly applying related methods on long-tail distribution might be at risk of hurting the experience of head users, which is less affordable since a small portion of head users with high activeness contribute a considerate portion of platform revenue. In this paper, we propose a novel approach that significantly improves the recommendation performance of the tail users while achieving at least comparable performance for the head users over the base model. The essence of this approach is a novel Gradient Aggregation technique that learns common knowledge shared by all users into a backbone model, followed by separate plugin prediction networks for the head users and the tail users personalization. As for common knowledge learning, we leverage the backward adjustment from the causality theory for deconfounding the gradient estimation and thus shielding off the backbone training from the confounder, i.e., user activeness. We conduct extensive experiments on two public recommendation benchmark datasets and a large-scale industrial datasets collected from the Alipay platform. Empirical studies validate the rationality and effectiveness of our approach.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube