Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Effective, Platform-Independent GUI Testing via Image Embedding and Reinforcement Learning (2208.09116v2)

Published 19 Aug 2022 in cs.SE

Abstract: Software applications have been playing an increasingly important role in various aspects of society. In particular, mobile apps and web apps are the most prevalent among all applications and are widely used in various industries as well as in people's daily lives. To help ensure mobile and web app quality, many approaches have been introduced to improve app GUI testing via automated exploration. Despite the extensive effort, existing approaches are still limited in reaching high code coverage, constructing high-quality models, and being generally applicable. Reinforcement learning-based approaches are faced with difficult challenges, including effective app state abstraction, reward function design, etc. Moreover, they heavily depend on the specific execution platforms, thus leading to poor generalizability and being unable to adapt to different platforms. We propose PIRLTest, an effective platform-independent approach for app testing. It utilizes computer vision and reinforcement learning techniques in a novel, synergistic manner for automated testing. It extracts the GUI widgets from GUI pages and characterizes the corresponding GUI layouts, embedding the GUI pages as states. The app GUI state combines the macroscopic perspective and the microscopic perspective, and attaches the critical semantic information from GUI images. This enables PIRLTest to be platform-independent and makes the testing approach generally applicable on different platforms. PIRLTest explores apps with the guidance of a curiosity-driven strategy, which uses a Q-network to estimate the values of specific state-action pairs to encourage more exploration in uncovered pages without platform dependency. The exploration will be assigned with rewards for all actions, which are designed considering both the app GUI states and the concrete widgets, to help the framework explore more uncovered pages.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.