Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

VAuLT: Augmenting the Vision-and-Language Transformer for Sentiment Classification on Social Media (2208.09021v3)

Published 18 Aug 2022 in cs.CV, cs.AI, cs.CL, and cs.LG

Abstract: We propose the Vision-and-Augmented-Language Transformer (VAuLT). VAuLT is an extension of the popular Vision-and-Language Transformer (ViLT), and improves performance on vision-and-language (VL) tasks that involve more complex text inputs than image captions while having minimal impact on training and inference efficiency. ViLT, importantly, enables efficient training and inference in VL tasks, achieved by encoding images using a linear projection of patches instead of an object detector. However, it is pretrained on captioning datasets, where the language input is simple, literal, and descriptive, therefore lacking linguistic diversity. So, when working with multimedia data in the wild, such as multimodal social media data, there is a notable shift from captioning language data, as well as diversity of tasks. We indeed find evidence that the language capacity of ViLT is lacking. The key insight and novelty of VAuLT is to propagate the output representations of a LLM (LM) like BERT to the language input of ViLT. We show that joint training of the LM and ViLT can yield relative improvements up to 20% over ViLT and achieve state-of-the-art or comparable performance on VL tasks involving richer language inputs and affective constructs, such as for Target-Oriented Sentiment Classification in TWITTER-2015 and TWITTER-2017, and Sentiment Classification in MVSA-Single and MVSA-Multiple. Our code is available at https://github.com/gchochla/VAuLT.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.