Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Automated Detection of Acute Lymphoblastic Leukemia Subtypes from Microscopic Blood Smear Images using Deep Neural Networks (2208.08992v1)

Published 30 Jul 2022 in eess.IV, cs.AI, cs.CV, and cs.LG

Abstract: An estimated 300,000 new cases of leukemia are diagnosed each year which is 2.8 percent of all new cancer cases and the prevalence is rising day by day. The most dangerous and deadly type of leukemia is acute lymphoblastic leukemia (ALL), which affects people of all age groups, including children and adults. In this study, we propose an automated system to detect various-shaped ALL blast cells from microscopic blood smears images using Deep Neural Networks (DNN). The system can detect multiple subtypes of ALL cells with an accuracy of 98 percent. Moreover, we have developed a telediagnosis software to provide real-time support to diagnose ALL subtypes from microscopic blood smears images.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.