Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Prompt Vision Transformer for Domain Generalization (2208.08914v1)

Published 18 Aug 2022 in cs.CV

Abstract: Though vision transformers (ViTs) have exhibited impressive ability for representation learning, we empirically find that they cannot generalize well to unseen domains with previous domain generalization algorithms. In this paper, we propose a novel approach DoPrompt based on prompt learning to embed the knowledge of source domains in domain prompts for target domain prediction. Specifically, domain prompts are prepended before ViT input tokens from the corresponding source domain. Each domain prompt learns domain-specific knowledge efficiently since it is optimized only for one domain. Meanwhile, we train a prompt adapter to produce a suitable prompt for each input image based on the learned source domain prompts. At test time, the adapted prompt generated by the prompt adapter can exploit the similarity between the feature of the out-of-domain image and source domains to properly integrate the source domain knowledge. Extensive experiments are conducted on four benchmark datasets. Our approach achieves 1.4% improvements in the averaged accuracy, which is 3.5 times the improvement of the state-of-the-art algorithm with a ViT backbone.

Citations (46)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.