Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Enhancing Targeted Attack Transferability via Diversified Weight Pruning (2208.08677v2)

Published 18 Aug 2022 in cs.CV, cs.CR, and cs.LG

Abstract: Malicious attackers can generate targeted adversarial examples by imposing tiny noises, forcing neural networks to produce specific incorrect outputs. With cross-model transferability, network models remain vulnerable even in black-box settings. Recent studies have shown the effectiveness of ensemble-based methods in generating transferable adversarial examples. To further enhance transferability, model augmentation methods aim to produce more networks participating in the ensemble. However, existing model augmentation methods are only proven effective in untargeted attacks. In this work, we propose Diversified Weight Pruning (DWP), a novel model augmentation technique for generating transferable targeted attacks. DWP leverages the weight pruning method commonly used in model compression. Compared with prior work, DWP protects necessary connections and ensures the diversity of the pruned models simultaneously, which we show are crucial for targeted transferability. Experiments on the ImageNet-compatible dataset under various and more challenging scenarios confirm the effectiveness: transferring to adversarially trained models, Non-CNN architectures, and Google Cloud Vision. The results show that our proposed DWP improves the targeted attack success rates with up to $10.1$%, $6.6$%, and $7.0$% on the combination of state-of-the-art methods, respectively. The source code will be made available after acceptance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.