Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Modeling road user response timing in naturalistic settings: a surprise-based framework (2208.08651v2)

Published 18 Aug 2022 in cs.HC

Abstract: There is currently no established method for evaluating human response timing across a range of naturalistic traffic conflict types. Traditional notions derived from controlled experiments, such as perception-response time, fail to account for the situation-dependency of human responses and offer no clear way to define the stimulus in many common traffic conflict scenarios. As a result, they are not well suited for application in naturalistic settings. Our main contribution is the development of a novel framework for measuring and modeling response times in naturalistic traffic conflicts applicable to automated driving systems as well as other traffic safety domains. The framework suggests that response timing must be understood relative to the subject's current (prior) belief and is always embedded in, and dependent on, the dynamically evolving situation. The response process is modeled as a belief update process driven by perceived violations to this prior belief, that is, by surprising stimuli. The framework resolves two key limitations with traditional notions of response time when applied in naturalistic scenarios: (1) The strong situation-dependence of response timing and (2) how to unambiguously define the stimulus. Resolving these issues is a challenge that must be addressed by any response timing model intended to be applied in naturalistic traffic conflicts. We show how the framework can be implemented by means of a relatively simple heuristic model fit to naturalistic human response data from real crashes and near crashes from the SHRP2 dataset and discuss how it is, in principle, generalizable to any traffic conflict scenario. We also discuss how the response timing framework can be implemented computationally based on evidence accumulation enhanced by machine learning-based generative models and the information-theoretic concept of surprise.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube