Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Constant-Depth Sorting Networks (2208.08394v1)

Published 17 Aug 2022 in cs.CC

Abstract: In this paper, we address sorting networks that are constructed from comparators of arity $k > 2$. That is, in our setting the arity of the comparators -- or, in other words, the number of inputs that can be sorted at the unit cost -- is a parameter. We study its relationship with two other parameters -- $n$, the number of inputs, and $d$, the depth. This model received considerable attention. Partly, its motivation is to better understand the structure of sorting networks. In particular, sorting networks with large arity are related to recursive constructions of ordinary sorting networks. Additionally, studies of this model have natural correspondence with a recent line of work on constructing circuits for majority functions from majority gates of lower fan-in. Motivated by these questions, we obtain the first lower bounds on the arity of constant-depth sorting networks. More precisely, we consider sorting networks of depth $d$ up to 4, and determine the minimal $k$ for which there is such a network with comparators of arity $k$. For depths $d=1,2$ we observe that $k=n$. For $d=3$ we show that $k = \lceil \frac n2 \rceil$. For $d=4$ the minimal arity becomes sublinear: $k = \Theta(n{2/3})$. This contrasts with the case of majority circuits, in which $k = O(n{2/3})$ is achievable already for depth $d=3$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.