The proper conflict-free $k$-coloring problem and the odd $k$-coloring problem are NP-complete on bipartite graphs (2208.08330v1)
Abstract: A proper coloring of a graph is \emph{proper conflict-free} if every non-isolated vertex $v$ has a neighbor whose color is unique in the neighborhood of $v$. A proper coloring of a graph is \emph{odd} if for every non-isolated vertex $v$, there is a color appearing an odd number of times in the neighborhood of $v$. For an integer $k$, the \textsc{PCF $k$-Coloring} problem asks whether an input graph admits a proper conflict-free $k$-coloring and the \textsc{Odd $k$-Coloring} asks whether an input graph admits an odd $k$-coloring. We show that for every integer $k\geq3$, both problems are NP-complete, even if the input graph is bipartite. Furthermore, we show that the \textsc{PCF $4$-Coloring} problem is NP-complete when the input graph is planar.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.