Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The proper conflict-free $k$-coloring problem and the odd $k$-coloring problem are NP-complete on bipartite graphs (2208.08330v1)

Published 17 Aug 2022 in cs.CC and math.CO

Abstract: A proper coloring of a graph is \emph{proper conflict-free} if every non-isolated vertex $v$ has a neighbor whose color is unique in the neighborhood of $v$. A proper coloring of a graph is \emph{odd} if for every non-isolated vertex $v$, there is a color appearing an odd number of times in the neighborhood of $v$. For an integer $k$, the \textsc{PCF $k$-Coloring} problem asks whether an input graph admits a proper conflict-free $k$-coloring and the \textsc{Odd $k$-Coloring} asks whether an input graph admits an odd $k$-coloring. We show that for every integer $k\geq3$, both problems are NP-complete, even if the input graph is bipartite. Furthermore, we show that the \textsc{PCF $4$-Coloring} problem is NP-complete when the input graph is planar.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: