Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Active Learning for Deterministic Bottom-up Nominal Tree Automata (2208.08319v1)

Published 17 Aug 2022 in cs.FL

Abstract: Nominal set plays a central role in a group-theoretic extension of finite automata to those over an infinite set of data values. Moerman et al. proposed an active learning algorithm for nominal word automata with the equality symmetry. In this paper, we introduce deterministic bottom-up nominal tree automata (DBNTA), which operate on trees whose nodes are labelled with elements of an orbit finite nominal set. We then prove a Myhill-Nerode theorem for the class of languages recognized by DBNTA and propose an active learning algorithm for DBNTA. The algorithm can deal with any data symmetry that admits least support, not restricted to the equality symmetry and/or the total order symmetry. To prove the termination of the algorithm, we define a partial order on nominal sets and show that there is no infinite chain of orbit finite nominal sets with respect to this partial order between any two orbit finite sets.

Summary

We haven't generated a summary for this paper yet.