Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

CCTEST: Testing and Repairing Code Completion Systems (2208.08289v3)

Published 17 Aug 2022 in cs.SE

Abstract: Code completion, a highly valuable topic in the software development domain, has been increasingly promoted for use by recent advances in LLMs. To date, visible LLM-based code completion frameworks such as GitHub Copilot and GPT are trained using deep learning over vast quantities of unstructured text and open source code. As the paramount component and the cornerstone in daily programming tasks, code completion has largely boosted professionals' efficiency in building real-world software systems. In contrast to this flourishing market, we find that code completion systems often output suspicious results, and to date, an automated testing and enhancement framework for code completion systems is not available. This research proposes CCTEST, a framework to test and repair code completion systems in blackbox settings. CCTEST features a set of novel mutation strategies, namely program structure-correlated (PSC) mutations, to generate mutated code completion inputs. Then, it detects inconsistent outputs, representing possibly erroneous cases, from all the completed code cases. Moreover, CCTEST repairs the code completion outputs by selecting the output that mostly reflects the "average" appearance of all output cases, as the final output of the code completion systems. We detected a total of 33,540 inputs (with a true positive rate of 86%) that can trigger erroneous cases from eight popular LLM-based code completion systems. With repairing, we show that the accuracy of code completion systems is notably increased by 40% and 67% with respect to BLEU score and Levenshtein edit similarity.

Citations (59)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.