Papers
Topics
Authors
Recent
2000 character limit reached

AHEAD: A Triple Attention Based Heterogeneous Graph Anomaly Detection Approach (2208.08200v1)

Published 17 Aug 2022 in cs.SI and cs.LG

Abstract: Graph anomaly detection on attributed networks has become a prevalent research topic due to its broad applications in many influential domains. In real-world scenarios, nodes and edges in attributed networks usually display distinct heterogeneity, i.e. attributes of different types of nodes show great variety, different types of relations represent diverse meanings. Anomalies usually perform differently from the majority in various perspectives of heterogeneity in these networks. However, existing graph anomaly detection approaches do not leverage heterogeneity in attributed networks, which is highly related to anomaly detection. In light of this problem, we propose AHEAD: a heterogeneity-aware unsupervised graph anomaly detection approach based on the encoder-decoder framework. Specifically, for the encoder, we design three levels of attention, i.e. attribute level, node type level, and edge level attentions to capture the heterogeneity of network structure, node properties and information of a single node, respectively. In the decoder, we exploit structure, attribute, and node type reconstruction terms to obtain an anomaly score for each node. Extensive experiments show the superiority of AHEAD on several real-world heterogeneous information networks compared with the state-of-arts in the unsupervised setting. Further experiments verify the effectiveness and robustness of our triple attention, model backbone, and decoder in general.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.