Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 162 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

AHEAD: A Triple Attention Based Heterogeneous Graph Anomaly Detection Approach (2208.08200v1)

Published 17 Aug 2022 in cs.SI and cs.LG

Abstract: Graph anomaly detection on attributed networks has become a prevalent research topic due to its broad applications in many influential domains. In real-world scenarios, nodes and edges in attributed networks usually display distinct heterogeneity, i.e. attributes of different types of nodes show great variety, different types of relations represent diverse meanings. Anomalies usually perform differently from the majority in various perspectives of heterogeneity in these networks. However, existing graph anomaly detection approaches do not leverage heterogeneity in attributed networks, which is highly related to anomaly detection. In light of this problem, we propose AHEAD: a heterogeneity-aware unsupervised graph anomaly detection approach based on the encoder-decoder framework. Specifically, for the encoder, we design three levels of attention, i.e. attribute level, node type level, and edge level attentions to capture the heterogeneity of network structure, node properties and information of a single node, respectively. In the decoder, we exploit structure, attribute, and node type reconstruction terms to obtain an anomaly score for each node. Extensive experiments show the superiority of AHEAD on several real-world heterogeneous information networks compared with the state-of-arts in the unsupervised setting. Further experiments verify the effectiveness and robustness of our triple attention, model backbone, and decoder in general.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.