Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Disentangling Identity and Pose for Facial Expression Recognition (2208.08106v1)

Published 17 Aug 2022 in cs.CV

Abstract: Facial expression recognition (FER) is a challenging problem because the expression component is always entangled with other irrelevant factors, such as identity and head pose. In this work, we propose an identity and pose disentangled facial expression recognition (IPD-FER) model to learn more discriminative feature representation. We regard the holistic facial representation as the combination of identity, pose and expression. These three components are encoded with different encoders. For identity encoder, a well pre-trained face recognition model is utilized and fixed during training, which alleviates the restriction on specific expression training data in previous works and makes the disentanglement practicable on in-the-wild datasets. At the same time, the pose and expression encoder are optimized with corresponding labels. Combining identity and pose feature, a neutral face of input individual should be generated by the decoder. When expression feature is added, the input image should be reconstructed. By comparing the difference between synthesized neutral and expressional images of the same individual, the expression component is further disentangled from identity and pose. Experimental results verify the effectiveness of our method on both lab-controlled and in-the-wild databases and we achieve state-of-the-art recognition performance.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.