Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Imperceptible and Robust Backdoor Attack in 3D Point Cloud (2208.08052v1)

Published 17 Aug 2022 in cs.CV and cs.CR

Abstract: With the thriving of deep learning in processing point cloud data, recent works show that backdoor attacks pose a severe security threat to 3D vision applications. The attacker injects the backdoor into the 3D model by poisoning a few training samples with trigger, such that the backdoored model performs well on clean samples but behaves maliciously when the trigger pattern appears. Existing attacks often insert some additional points into the point cloud as the trigger, or utilize a linear transformation (e.g., rotation) to construct the poisoned point cloud. However, the effects of these poisoned samples are likely to be weakened or even eliminated by some commonly used pre-processing techniques for 3D point cloud, e.g., outlier removal or rotation augmentation. In this paper, we propose a novel imperceptible and robust backdoor attack (IRBA) to tackle this challenge. We utilize a nonlinear and local transformation, called weighted local transformation (WLT), to construct poisoned samples with unique transformations. As there are several hyper-parameters and randomness in WLT, it is difficult to produce two similar transformations. Consequently, poisoned samples with unique transformations are likely to be resistant to aforementioned pre-processing techniques. Besides, as the controllability and smoothness of the distortion caused by a fixed WLT, the generated poisoned samples are also imperceptible to human inspection. Extensive experiments on three benchmark datasets and four models show that IRBA achieves 80%+ ASR in most cases even with pre-processing techniques, which is significantly higher than previous state-of-the-art attacks.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.