Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Towards Generating Robust, Fair, and Emotion-Aware Explanations for Recommender Systems (2208.08017v1)

Published 17 Aug 2022 in cs.AI

Abstract: As recommender systems become increasingly sophisticated and complex, they often suffer from lack of fairness and transparency. Providing robust and unbiased explanations for recommendations has been drawing more and more attention as it can help address these issues and improve trustworthiness and informativeness of recommender systems. However, despite the fact that such explanations are generated for humans who respond more strongly to messages with appropriate emotions, there is a lack of consideration for emotions when generating explanations for recommendations. Current explanation generation models are found to exaggerate certain emotions without accurately capturing the underlying tone or the meaning. In this paper, we propose a novel method based on a multi-head transformer, called Emotion-aware Transformer for Explainable Recommendation (EmoTER), to generate more robust, fair, and emotion-enhanced explanations. To measure the linguistic quality and emotion fairness of the generated explanations, we adopt both automatic text metrics and human perceptions for evaluation. Experiments on three widely-used benchmark datasets with multiple evaluation metrics demonstrate that EmoTER consistently outperforms the existing state-of-the-art explanation generation models in terms of text quality, explainability, and consideration for fairness to emotion distribution. Implementation of EmoTER will be released as an open-source toolkit to support further research.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.