Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Matching Multiple Perspectives for Efficient Representation Learning (2208.07654v1)

Published 16 Aug 2022 in cs.CV

Abstract: Representation learning approaches typically rely on images of objects captured from a single perspective that are transformed using affine transformations. Additionally, self-supervised learning, a successful paradigm of representation learning, relies on instance discrimination and self-augmentations which cannot always bridge the gap between observations of the same object viewed from a different perspective. Viewing an object from multiple perspectives aids holistic understanding of an object which is particularly important in situations where data annotations are limited. In this paper, we present an approach that combines self-supervised learning with a multi-perspective matching technique and demonstrate its effectiveness on learning higher quality representations on data captured by a robotic vacuum with an embedded camera. We show that the availability of multiple views of the same object combined with a variety of self-supervised pretraining algorithms can lead to improved object classification performance without extra labels.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.