Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

$L^p$ sampling numbers for the Fourier-analytic Barron space (2208.07605v1)

Published 16 Aug 2022 in math.FA, cs.LG, and stat.ML

Abstract: In this paper, we consider Barron functions $f : [0,1]d \to \mathbb{R}$ of smoothness $\sigma > 0$, which are functions that can be written as [ f(x) = \int_{\mathbb{R}d} F(\xi) \, e{2 \pi i \langle x, \xi \rangle} \, d \xi \quad \text{with} \quad \int_{\mathbb{R}d} |F(\xi)| \cdot (1 + |\xi|){\sigma} \, d \xi < \infty. ] For $\sigma = 1$, these functions play a prominent role in machine learning, since they can be efficiently approximated by (shallow) neural networks without suffering from the curse of dimensionality. For these functions, we study the following question: Given $m$ point samples $f(x_1),\dots,f(x_m)$ of an unknown Barron function $f : [0,1]d \to \mathbb{R}$ of smoothness $\sigma$, how well can $f$ be recovered from these samples, for an optimal choice of the sampling points and the reconstruction procedure? Denoting the optimal reconstruction error measured in $Lp$ by $s_m (\sigma; Lp)$, we show that [ m{- \frac{1}{\max { p,2 }} - \frac{\sigma}{d}} \lesssim s_m(\sigma;Lp) \lesssim (\ln (e + m)){\alpha(\sigma,d) / p} \cdot m{- \frac{1}{\max { p,2 }} - \frac{\sigma}{d}} , ] where the implied constants only depend on $\sigma$ and $d$ and where $\alpha(\sigma,d)$ stays bounded as $d \to \infty$.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube