Papers
Topics
Authors
Recent
2000 character limit reached

Machine Learning-Based Test Smell Detection (2208.07574v1)

Published 16 Aug 2022 in cs.SE and cs.LG

Abstract: Context: Test smells are symptoms of sub-optimal design choices adopted when developing test cases. Previous studies have proved their harmfulness for test code maintainability and effectiveness. Therefore, researchers have been proposing automated, heuristic-based techniques to detect them. However, the performance of such detectors is still limited and dependent on thresholds to be tuned. Objective: We propose the design and experimentation of a novel test smell detection approach based on machine learning to detect four test smells. Method: We plan to develop the largest dataset of manually-validated test smells. This dataset will be leveraged to train six machine learners and assess their capabilities in within- and cross-project scenarios. Finally, we plan to compare our approach with state-of-the-art heuristic-based techniques.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.