Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Hybrid Approach on Conditional GAN for Portfolio Analysis (2208.07159v1)

Published 13 Jul 2022 in q-fin.PM and cs.LG

Abstract: Over the decades, the Markowitz framework has been used extensively in portfolio analysis though it puts too much emphasis on the analysis of the market uncertainty rather than on the trend prediction. While generative adversarial network (GAN), conditional GAN (CGAN), and autoencoding CGAN (ACGAN) have been explored to generate financial time series and extract features that can help portfolio analysis. The limitation of the CGAN or ACGAN framework stands in putting too much emphasis on generating series and finding the internal trends of the series rather than predicting the future trends. In this paper, we introduce a hybrid approach on conditional GAN based on deep generative models that learns the internal trend of historical data while modeling market uncertainty and future trends. We evaluate the model on several real-world datasets from both the US and Europe markets, and show that the proposed HybridCGAN and HybridACGAN models lead to better portfolio allocation compared to the existing Markowitz, CGAN, and ACGAN approaches.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com