Papers
Topics
Authors
Recent
2000 character limit reached

A Hybrid Approach on Conditional GAN for Portfolio Analysis (2208.07159v1)

Published 13 Jul 2022 in q-fin.PM and cs.LG

Abstract: Over the decades, the Markowitz framework has been used extensively in portfolio analysis though it puts too much emphasis on the analysis of the market uncertainty rather than on the trend prediction. While generative adversarial network (GAN), conditional GAN (CGAN), and autoencoding CGAN (ACGAN) have been explored to generate financial time series and extract features that can help portfolio analysis. The limitation of the CGAN or ACGAN framework stands in putting too much emphasis on generating series and finding the internal trends of the series rather than predicting the future trends. In this paper, we introduce a hybrid approach on conditional GAN based on deep generative models that learns the internal trend of historical data while modeling market uncertainty and future trends. We evaluate the model on several real-world datasets from both the US and Europe markets, and show that the proposed HybridCGAN and HybridACGAN models lead to better portfolio allocation compared to the existing Markowitz, CGAN, and ACGAN approaches.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.