Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Applying Regularized Schrödinger-Bridge-Based Stochastic Process in Generative Modeling (2208.07131v1)

Published 15 Aug 2022 in cs.LG and stat.ML

Abstract: Compared to the existing function-based models in deep generative modeling, the recently proposed diffusion models have achieved outstanding performance with a stochastic-process-based approach. But a long sampling time is required for this approach due to many timesteps for discretization. Schr\"odinger bridge (SB)-based models attempt to tackle this problem by training bidirectional stochastic processes between distributions. However, they still have a slow sampling speed compared to generative models such as generative adversarial networks. And due to the training of the bidirectional stochastic processes, they require a relatively long training time. Therefore, this study tried to reduce the number of timesteps and training time required and proposed regularization terms to the existing SB models to make the bidirectional stochastic processes consistent and stable with a reduced number of timesteps. Each regularization term was integrated into a single term to enable more efficient training in computation time and memory usage. Applying this regularized stochastic process to various generation tasks, the desired translations between different distributions were obtained, and accordingly, the possibility of generative modeling based on a stochastic process with faster sampling speed could be confirmed. The code is available at https://github.com/KiUngSong/RSB.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)