Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Context-aware Mixture-of-Experts for Unbiased Scene Graph Generation (2208.07109v3)

Published 15 Aug 2022 in cs.CV

Abstract: Scene graph generation (SGG) has gained tremendous progress in recent years. However, its underlying long-tailed distribution of predicate classes is a challenging problem. For extremely unbalanced predicate distributions, existing approaches usually construct complicated context encoders to extract the intrinsic relevance of scene context to predicates and complex networks to improve the learning ability of network models for highly imbalanced predicate distributions. To address the unbiased SGG problem, we introduce a simple yet effective method dubbed Context-Aware Mixture-of-Experts (CAME) to improve model diversity and mitigate biased SGG without complicated design. Specifically, we propose to integrate the mixture of experts with a divide and ensemble strategy to remedy the severely long-tailed distribution of predicate classes, which is applicable to the majority of unbiased scene graph generators. The biased SGG is thereby reduced, and the model tends to anticipate more evenly distributed predicate predictions. To differentiate between various predicate distribution levels, experts with the same weights are not sufficiently diverse. In order to enable the network dynamically exploit the rich scene context and further boost the diversity of model, we simply use the built-in module to create a context encoder. The importance of each expert to scene context and each predicate to each expert is dynamically associated with expert weighting (EW) and predicate weighting (PW) strategy. We have conducted extensive experiments on three tasks using the Visual Genome dataset, showing that CAME outperforms recent methods and achieves state-of-the-art performance. Our code will be available publicly.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.