Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Graph Contrastive Learning with Node Similarity (2208.06743v1)

Published 13 Aug 2022 in cs.LG

Abstract: Graph Neural Networks (GNNs) have achieved great success in learning graph representations and thus facilitating various graph-related tasks. However, most GNN methods adopt a supervised learning setting, which is not always feasible in real-world applications due to the difficulty to obtain labeled data. Hence, graph self-supervised learning has been attracting increasing attention. Graph contrastive learning (GCL) is a representative framework for self-supervised learning. In general, GCL learns node representations by contrasting semantically similar nodes (positive samples) and dissimilar nodes (negative samples) with anchor nodes. Without access to labels, positive samples are typically generated by data augmentation, and negative samples are uniformly sampled from the entire graph, which leads to a sub-optimal objective. Specifically, data augmentation naturally limits the number of positive samples that involve in the process (typically only one positive sample is adopted). On the other hand, the random sampling process would inevitably select false-negative samples (samples sharing the same semantics with the anchor). These issues limit the learning capability of GCL. In this work, we propose an enhanced objective that addresses the aforementioned issues. We first introduce an unachievable ideal objective that contains all positive samples and no false-negative samples. This ideal objective is then transformed into a probabilistic form based on the distributions for sampling positive and negative samples. We then model these distributions with node similarity and derive the enhanced objective. Comprehensive experiments on various datasets demonstrate the effectiveness of the proposed enhanced objective under different settings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hongliang Chi (7 papers)
  2. Yao Ma (149 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.