Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Mengerian graphs: characterization and recognition (2208.06517v1)

Published 12 Aug 2022 in math.CO and cs.DM

Abstract: A temporal graph ${\cal G}$ is a graph that changes with time. More specifically, it is a pair $(G, \lambda)$ where $G$ is a graph and $\lambda$ is a function on the edges of $G$ that describes when each edge $e\in E(G)$ is active. Given vertices $s,t\in V(G)$, a temporal $s,t$-path is a path in $G$ that traverses edges in non-decreasing time; and if $s,t$ are non-adjacent, then a temporal $s,t$-cut is a subset $S\subseteq V(G)\setminus{s,t}$ whose removal destroys all temporal $s,t$-paths. It is known that Menger's Theorem does not hold on this context, i.e., that the maximum number of internally vertex disjoint temporal $s,t$-paths is not necessarily equal to the minimum size of a temporal $s,t$-cut. In a seminal paper, Kempe, Kleinberg and Kumar (STOC'2000) defined a graph $G$ to be Mengerian if equality holds on $(G,\lambda)$ for every function $\lambda$. They then proved that, if each edge is allowed to be active only once in $(G,\lambda)$, then $G$ is Mengerian if and only if $G$ has no gem as topological minor. In this paper, we generalize their result by allowing edges to be active more than once, giving a characterization also in terms of forbidden structures. We additionally provide a polynomial time recognition algorithm.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.