Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Parallel QR Factorization of Block Low-Rank Matrices (2208.06194v1)

Published 12 Aug 2022 in math.NA, cs.MS, and cs.NA

Abstract: We present two new algorithms for Householder QR factorization of Block Low-Rank (BLR) matrices: one that performs block-column-wise QR, and another that is based on tiled QR. We show how the block-column-wise algorithm exploits BLR structure to achieve arithmetic complexity of $\mathcal{O}(mn)$, while the tiled BLR-QR exhibits $\mathcal{O}(mn{1.5})$ complexity. However, the tiled BLR-QR has finer task granularity that allows parallel task-based execution on shared memory systems. We compare the block-column-wise BLR-QR using fork-join parallelism with tiled BLR-QR using task-based parallelism. We also compare these two implementations of Householder BLR-QR with a block-column-wise Modified Gram-Schmidt (MGS) BLR-QR using fork-join parallelism, and a state-of-the-art vendor-optimized dense Householder QR in Intel MKL. For a matrix of size 131k $\times$ 65k, all BLR methods are more than an order of magnitude faster than the dense QR in MKL. Our methods are also robust to ill-conditioning and produce better orthogonal factors than the existing MGS-based method. On a CPU with 64 cores, our parallel tiled Householder and block-column-wise Householder algorithms show a speedup of 50 and 37 times, respectively.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube