Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Personalizing or Not: Dynamically Personalized Federated Learning with Incentives (2208.06192v2)

Published 12 Aug 2022 in cs.LG and cs.AI

Abstract: Personalized federated learning (FL) facilitates collaborations between multiple clients to learn personalized models without sharing private data. The mechanism mitigates the statistical heterogeneity commonly encountered in the system, i.e., non-IID data over different clients. Existing personalized algorithms generally assume all clients volunteer for personalization. However, potential participants might still be reluctant to personalize models since they might not work well. In this case, clients choose to use the global model instead. To avoid making unrealistic assumptions, we introduce the personalization rate, measured as the fraction of clients willing to train personalized models, into federated settings and propose DyPFL. This dynamically personalized FL technique incentivizes clients to participate in personalizing local models while allowing the adoption of the global model when it performs better. We show that the algorithmic pipeline in DyPFL guarantees good convergence performance, allowing it to outperform alternative personalized methods in a broad range of conditions, including variation in heterogeneity, number of clients, local epochs, and batch sizes.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.