Papers
Topics
Authors
Recent
2000 character limit reached

The Weighting Game: Evaluating Quality of Explainability Methods (2208.06175v1)

Published 12 Aug 2022 in cs.CV

Abstract: The objective of this paper is to assess the quality of explanation heatmaps for image classification tasks. To assess the quality of explainability methods, we approach the task through the lens of accuracy and stability. In this work, we make the following contributions. Firstly, we introduce the Weighting Game, which measures how much of a class-guided explanation is contained within the correct class' segmentation mask. Secondly, we introduce a metric for explanation stability, using zooming/panning transformations to measure differences between saliency maps with similar contents. Quantitative experiments are produced, using these new metrics, to evaluate the quality of explanations provided by commonly used CAM methods. The quality of explanations is also contrasted between different model architectures, with findings highlighting the need to consider model architecture when choosing an explainability method.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.