Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Constrained and unconstrained stable discrete minimizations for p-robust local reconstructions in vertex patches in the de Rham complex (2208.05870v2)

Published 11 Aug 2022 in math.NA, cs.NA, and math.AP

Abstract: We analyze constrained and unconstrained minimization problems on patches of tetrahedra sharing a common vertex with discontinuous piecewise polynomial data of degree p. We show that the discrete minimizers in the spaces of piecewise polynomials of degree p conforming in the H1, H(curl), or H(div) spaces are as good as the minimizers in these entire (infinite-dimensional) Sobolev spaces, up to a constant that is independent of p. These results are useful in the analysis and design of finite element methods, namely for devising stable local commuting projectors and establishing local-best/global-best equivalences in a priori analysis and in the context of a posteriori error estimation. Unconstrained minimization in H1 and constrained minimization in H(div) have been previously treated in the literature. Along with improvement of the results in the H1 and H(div) cases, our key contribution is the treatment of the H(curl) framework. This enables us to cover the whole De Rham diagram in three space dimensions in a single setting.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube