Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Disentangled Modeling of Domain and Relevance for Adaptable Dense Retrieval (2208.05753v1)

Published 11 Aug 2022 in cs.IR, cs.CL, and cs.LG

Abstract: Recent advance in Dense Retrieval (DR) techniques has significantly improved the effectiveness of first-stage retrieval. Trained with large-scale supervised data, DR models can encode queries and documents into a low-dimensional dense space and conduct effective semantic matching. However, previous studies have shown that the effectiveness of DR models would drop by a large margin when the trained DR models are adopted in a target domain that is different from the domain of the labeled data. One of the possible reasons is that the DR model has never seen the target corpus and thus might be incapable of mitigating the difference between the training and target domains. In practice, unfortunately, training a DR model for each target domain to avoid domain shift is often a difficult task as it requires additional time, storage, and domain-specific data labeling, which are not always available. To address this problem, in this paper, we propose a novel DR framework named Disentangled Dense Retrieval (DDR) to support effective and flexible domain adaptation for DR models. DDR consists of a Relevance Estimation Module (REM) for modeling domain-invariant matching patterns and several Domain Adaption Modules (DAMs) for modeling domain-specific features of multiple target corpora. By making the REM and DAMs disentangled, DDR enables a flexible training paradigm in which REM is trained with supervision once and DAMs are trained with unsupervised data. Comprehensive experiments in different domains and languages show that DDR significantly improves ranking performance compared to strong DR baselines and substantially outperforms traditional retrieval methods in most scenarios.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.